
How Do Wind Turbines Work?
Wind turbines operate on a simple principle. The energy in the wind turns two or three propeller-like blades around a rotor. The rotor is connected to the main shaft, which spins a generator to create electricity.
So how do wind turbines make electricity? Simply stated, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity.
Wind is a form of solar energy and is a result of the uneven heating of the atmosphere by the sun, the irregularities of the earth's surface, and the rotation of the earth. Wind flow patterns and speeds vary greatly across the United States and are modified by bodies of water, vegetation, and differences in terrain. Humans use this wind flow, or motion energy, for many purposes: sailing, flying a kite, and even generating electricity.
The terms wind energy or wind power describe the process by which the wind is used to generate mechanical power or electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. This mechanical power can be used for specific tasks (such as grinding grain or pumping water) or a generator can convert this mechanical power into electricity.

Types of Wind Turbines
Modern wind turbines fall into two basic groups: the horizontal-axis variety, as shown in the photo to the far right, and the vertical-axis design, like the eggbeater-style Darrieus model pictured to the immediate right, named after its French inventor. Horizontal-axis wind turbines typically either have two or three blades. These three-bladed wind turbines are operated "upwind," with the blades facing into the wind.
Wind turbines can be built on land or offshore in large bodies of water like oceans and lakes. The U.S. Department of Energy is funding efforts that will make innovative offshore wind technology available in U.S. waters.


Sizes of Wind Turbines
Utility-scale turbines range in size from 100 kilowatts to as large as several megawatts. Larger wind turbines are more cost effective and are grouped together into wind farms, which provide bulk power to the electrical grid. Offshore wind turbines are larger, can generate more power, and do not have the same transportation challenges of land-based wind installations, as the large components can be transported on ships instead of on roads.
Single small turbines, below 100 kilowatts, are used for homes, telecommunications dishes, or water pumping. Small turbines are sometimes used in connection with diesel generators, batteries, and photovoltaic systems. These systems are called hybrid wind systems and are typically used in remote, off-grid locations, where a connection to the utility grid is not available.
Learn more about what the Wind Program is doing to support the deployment of small and mid-sized turbines for homes, businesses, farms, and community wind projects.
Wind Energy Benefits
1. Wind energy is cost competitive with other fuel sources.
The average levelized price of wind power purchase agreements signed in 2013 was approximately 2.5 cents per kilowatt-hour, a price that is not only cost competitive with new gas-fired power plants but also compares favorably to a range of fuel cost projections of gas-fired generation extending out through 2040.1 Public and private research and development (R&D) can provide continued technological advancements and further reduce wind energy costs.
2. Wind energy creates jobs.
Wind energy development creates thousands of long-term, high-paying jobs in fields such as wind turbine component manufacturing, construction and installation, maintenance and operations, legal and marketing services, transportation and logistical services, and more. In 2013, the wind sector invested $2 billion in the U.S. economy to build projects and employed more than 50,000 workers. Historically, employment in the wind industry’s manufacturing sector has varied depending on the status of federal incentives. In 2012, there were 25,500 jobs in the wind industry’s manufacturing sector. This number decreased to 17,400 in 2013 as a result of policy uncertainty prior to the extension of the Production Tax Credit later that year.6 U.S. small wind turbine manufacturers are focusing on growing international markets. Exports from U.S.-based small wind turbine manufacturers increased 70%, from 8 megawatts in 2012 to 13.6 megawatts in 2013. U.S. small wind turbines were exported to more than 50 countries in 2013, including Italy, the United Kingdom, Germany, Greece, China, Japan, Korea, Mexico, and Nigeria.7
3. Wind energy is an indigenous, homegrown energy source that helps to diversify the national energy portfolio. Adding wind power to the nation’s energy mix diversifies our clean energy portfolio and helps reduce America’s reliance on imported fossil fuels. With the expanded use of electric and plug-in hybrid vehicles, wind energy can also reduce our dependence on imported transportation fuels. Additionally, wind energy can help stabilize the cost of electricity and reduce our vulnerability to price spikes and supply disruptions.
4. Wind energy can provide income for farmers and ranchers, as well as economic benefits to communities.
Wind projects provide revenue to the communities in which they are located via lease payments to landowners, state and local tax revenues, and employment. Even a utilityscale wind turbine has a small footprint, enabling farmers and ranchers who lease their land to developers to continue growing crops and grazing livestock. As wind energy systems continue to expand, they provide significant economic benefits. A recent study found that, on average, wind power installations within the study area and occurring between 2000 and 2008 resulted in an increase in total county-level personal income of approximately $11,000 per megawatt.
5. Wind energy is an inexhaustible renewable energy source.
Wind energy is plentiful and readily available, and capturing its power does not deplete our natural resources. Improved technologies and taller turbines allow wind deployment in areas with lower wind speeds, such as in the southeastern United States. In addition, offshore wind has tremendous energy potential.

6. Wind turbines do not consume water.
Most electric power plants require water to operate, but producing electricity from the wind does not require water. Researchers estimate that wind power generation in 2013 reduced power-sector water consumption by 36.5 billion gallons.
7. Wind energy is clean.
Electricity generated by wind turbines does not pollute the water we drink or the air we breathe, so wind energy means less smog, less acid rain, and fewer greenhouse gas emissions. Researchers estimate that wind energy in the United States in 2013 reduced direct power-sector carbon dioxide emissions by 115 million metric tons, equivalent to eliminating the emissions of 20 million cars during the year. An estimated 157,000 metric tons of sulfur dioxide emissions and 97,000 metric tons of nitrogen oxides were also avoided.10 Because it is a clean energy source, wind energy reduces health care and environmental costs associated with air pollution.
8. Wind energy systems have low operating costs.
Wind energy systems have low operating expenses because there are no associated fuel costs. When large amounts of wind energy are added to the grid, additional generation may be required to accommodate wind energy’s variability, but leading experts in the field concluded that system operating cost increases from wind variability and uncertainty amounted to only about 10% or less of the wholesale value of the wind energy and that there are ways to reduce these costs. The absence of fuel cost also protects consumers from fluctuating coal and natural gas costs.
9. Wind energy can be used in a variety of applications.
Wind turbines can be used in a variety of applications. Utility-scale wind farms can provide electricity to an entire community while smaller turbines, often described as being used in “distributed applications,” can be installed at or near a site where the electricity will be used. Community wind projects include turbines for schools, tribes, municipal utilities, and rural electric cooperatives. Small wind turbines, alone or as part of a hybrid system, can power homes, businesses, farms, ranches, and schools. Wind energy can be perfect for remote applications such as water pumping, ice making, and telecommunications sites, and can displace diesel fuel in remote communities.
10. Wind energy is deployed in all U.S. regions and is widely supported.
Since 2007, wind power has represented 33% of all U.S. capacity additions, and an even larger fraction of new generation capacity in the Interior (54%) and Great Lakes (48%) regions. Growth in wind power capacity over the 2007–2013 period averaged 7.1 gigawatts per year. If wind power additions continue over the next decade at the same pace as in 2007–2013, then roughly 40% of the nation’s projected increase in electricity generation would be met with wind electricity. As of the end of September 2014, developers reported more than 13,600 megawatts of wind energy under construction. Because of all the benefits listed above and more, many opinion surveys show that the majority of people are in favor of wind energy. In 2013, a Gallup poll showed that more than 70% of Americans believed the United States should place more emphasis on wind energy development. Additionally, a 2014 bipartisan poll showed 87% of Midwesterners throughout Illinois, Iowa, Michigan, Minnesota, Ohio, and Wisconsin support increasing the use of wind energy.
REFERENCES
1Wiser, R.; Bolinger, M. (2014). 2013 Wind Technologies Market Report. U.S. Department of Energy. http://energy.gov/eere/wind/downloads/ 2013-wind-technologies-market-report 2Wiser, R.; Bolinger, M. (2014). 2013 Wind Technologies Market Report. U.S. Department of Energy. http://energy.gov/eere/wind/downloads/ 2013-wind-technologies-market-report 3American Wind Energy Association. (2014). U.S. Wind Energy Annual Market Report, Year Ending 2013. www.awea.org/amr2013 4Lantz. E.; Steinberg, D.; et al. (2014). Implications of a PTC Extension on U.S. Wind Deployment. National Renewable Energy Laboratory. www.nrel.gov/docs/ fy14osti/61663.pdf 5American Wind Energy Association. (2013). U.S. Wind Energy Annual Market Report, Year Ending 2012. www.awea.org/Resources/Content. aspx?ItemNumber=5346 6American Wind Energy Association. (2014). U.S. Wind Energy Annual Market Report, Year Ending 2013. www.awea.org/amr2013 7U.S. Department of Energy. (2014). 2013 Distributed Wind Market Report. http://energy.gov/sites/prod/files/2014/09/f18/2013%20Distributed%20Wind%20 Market%20Report.pdf 8U.S. Department of Energy. (2012). The Impact of Wind Development on County-Level Income and Employment: A Review of Methods and an Empirical Analysis. www.nrel.gov/docs/fy12osti/54226.pdf 9American Wind Energy Association. (2014). U.S. Wind Energy Annual Market Report, Year Ending 2013. www.awea.org/amr2013 10American Wind Energy Association. (2014). U.S. Wind Energy Annual Market Report, Year Ending 2013. www.awea.org/amr2013 11Utility Variable-Generation Integration Group. (2006). Utility Wind Integration State of the Art. www.uwig.org/UWIGWindIntegration052006.pdf 12Wiser, R.; Bolinger, M. (2014). 2013 Wind Technologies Market Report. U.S. Department of Energy. http://energy.gov/eere/wind/downloads/ 2013-wind-technologies-market-report 13American Wind Energy Association. (2014). U.S. Wind Industry Third Quarter 2014 Market Report. www.awea.org/Resources/Content. aspx?ItemNumber=6865 14Gallup. (2013). Americans Want More Emphasis on Solar, Wind, Natural Gas. www.gallup.com/poll/161519/americans-emphasis-solar-wind-natural-gas. aspx. Survey methodology and demographic overview are available at www.gallup.com/file/poll/161525/Energy_sources_130327.pdf 15FM3, Public Opinion Strategies. (2014). Voter Attitudes toward Energy Issues in the Midwest (includes information on survey methodology and demographic overview). www.mepartnership.org/wp-content/uploads/2014/08/ Re-AMP-2014MidwesternEnergyIssues-MediaRelease-Final.pdf
Turkish Wind Power Plants
1)Soma Rüzgar Santrali Manisa Polat Enerji 240 MW
2)Dinar Rüzgar Santrali Afyonkarahisar GüriÅŸ Holding 201 MW
3)Geycek Rüzgar Santrali KırÅŸehir Polat Enerji 168 MW
4)Balıkesir Rüzgar Santrali Balıkesir Enerjisa Elektrik 143 MW
5)Osmaniye GökçedaÄŸ RES Osmaniye Zorlu Enerji 135 MW
6)Bergama Rüzgar Santrali İzmir Bilgin Enerji 120 MW
7)Bilgin Enerji Soma Rüzgar Santrali Manisa Bilgin Enerji 120 MW
8)Karaburun Rüzgar Santrali İzmir Alto Holding 120 MW(223 MW)
9)Åžamlı Rüzgar Santrali Balıkesir Aksa Enerji 114 MW(126.5 MW)
10)Çatalca Rüzgar Santrali İstanbul Sanko Enerji 93 MW(100 MW)
11)Åžah Rüzgar Santrali Balıkesir DoÄŸan Enerji 93 MW(105 MW)
12)Bandırma Kurşunlu RES Balıkesir Borusan EnBW Enerji 87 MW
13)Kayseri Yahyalı Rüzgar Santrali Kayseri FC Enerji 83 MW
14)Kangal Rüzgar Santrali Sivas Ece Tur İnÅŸaat 78 MW(128 MW)
15)Edincik Rüzgar Santrali Balıkesir Edincik Enerji 77 MW
16)Ziyaret (Türbe) Rüzgar Santrali Hatay Fina Enerji 76 MW(90.25 MW)
17)Susurluk Rüzgar Santrali Balıkesir Eksim Enerji 73 MW
18)Aksu Rüzgar Santrali Kayseri Ayen Enerji 72 MW(80 MW)
19)Bergres Rüzgar Santrali İzmir Dost Enerji 70 MW
20)Poyraz Rüzgar Santrali Balıkesir Polat Enerji 67 MW
21)Balabanlı Rüzgar Santrali TekirdaÄŸ Borusan EnBW Enerji 61 MW
22)İÇDAÅž Biga RES Çanakkale İÇDAÅž Enerji 60 MW
23)Sebenoba Rüzgar Santrali Hatay Aksa Enerji 60 MW
24)SüloÄŸlu Rüzgar Santrali Edirne Steag Wind Enerji 60 MW
25)Uluborlu Rüzgar Santrali Isparta Fina Enerji 60 MW
26)YuntdaÄŸ Rüzgar Santrali İzmir Dost Enerji 60 MW
27)Çerçikaya RES Hatay ZT Enerji 57 MW
28)Mazı 1 Rüzgar Santrali İzmir Demirer Enerji 56 MW
29)MuÄŸla Fatma RES MuÄŸla GüriÅŸ Holding 56 MW(80 MW)
30)İntepe Anemon RES Çanakkale Demirer Enerji 56 MW
31)Airres 4 Rüzgar Enerji Santrali Kırklareli Airres Elektrik Üretim 55 MW
32)Sayalar Rüzgar Santrali Manisa Polat Enerji 54 MW
33)UÅŸak Rüzgar Santrali UÅŸak Bereket Enerji 54 MW
34)Yalova RES Yalova Bereket Enerji 54 MW
35)Sancak Enerji Yahyalı RES Kayseri Sancak Enerji 53 MW
36)Düzova Rüzgar Santrali İzmir Fina Enerji 52 MW
37)Subaşı Kanije RES Edirne GüriÅŸ Holding 51 MW(64 MW)
38)Bandırma RES Balıkesir Bilgin Enerji 50 MW
39)Harmanlık RES Bursa Borusan EnBW Enerji 50 MW
40)Hasanbeyli Rüzgar Santrali Osmaniye Eksim Enerji 50 MW
41)Kavaklı Rüzgar Santrali Balıkesir Erciyas Holding 50 MW
42)Koru Rüzgar Santrali Çanakkale Borusan EnBW Enerji 50 MW
43)Mut Rüzgar Santrali Mersin Borusan EnBW Enerji 50 MW
44)Sarıtepe RES (Rotor 2) Osmaniye Zorlu Enerji 50 MW
45)Zeytineli RES İzmir Bilgin Enerji 50 MW
46)Belen Rüzgar Santrali Hatay GüriÅŸ Holding 48 MW
47)Kınık Rüzgar Santrali İzmir Özbolat Enerji Grubu 48 MW(50 MW)
48)BaÄŸarası Rüzgar Santrali Aydın Erdem Holding Enerji Grubu 46 MW
49)KırkaÄŸaç RES Manisa Gama Enerji 45 MW
50)Kurtkaya RES Kayseri Are Elektrik Üretim 45 MW
51)Silivri Rüzgar Santrali İstanbul Eksim Enerji 45 MW
52)Söke RES Aydın Bereket Enerji 45 MW
53)TekirdaÄŸ Kıyıköy RES TekirdaÄŸ BeÅŸiktepe Üretim 44 MW
54)Samurlu Rüzgar Santrali İzmir Polat Enerji 44 MW
55)Akhisar Rüzgar Santrali Manisa Karesi Enerji 44 MW
56)Çanta Rüzgar Santrali İstanbul Boydak Enerji 43 MW(45 MW)
57)Amasya Rüzgar Enerji Santrali Amasya Mina Group 42 MW
58)ÖdemiÅŸ RES İzmir Erdem Holding Enerji Grubu 41 MW
59)Bandırma 3 RES Balıkesir Bursa Temiz Enerji 41 MW
60)Kuyucak RES Manisa Demirer Enerji 41 MW(50.1 MW)
61)Demircili Rüzgar Santrali İzmir Çalık Enerji 40 MW
62)Killik Rüzgar Santrali Tokat Eksim Enerji 40 MW(85 MW)
63)DaÄŸpazarı Rüzgar Santrali Mersin Enerjisa Elektrik 39 MW
64)Kayadüzü Rüzgar Santrali Amasya Eksim Enerji 39 MW (75 MW)
65)Metristepe Rüzgar Santrali Bilecik Can Enerji 39 MW(50 MW)
66)Åženbük Rüzgar Santrali Hatay Bakras Enerji 38 MW
67)Umurlar Rüzgar Santrali Balıkesir Yıldırım Grup 36 MW
68)Seyitali Rüzgar Santrali İzmir Polat Enerji 36 MW
69)Gökres 2 RES Manisa Gama Enerji 35 MW
70)Åženköy Rüzgar Santrali Hatay GüriÅŸ Holding 35 MW
71)Mersin Rüzgar Enerji Santrali Mersin DoÄŸan Enerji 34 MW
72)Şadıllı RES Edirne Fina Enerji 33 MW
73)Kozbeyli Rüzgar Santrali İzmir Polat Enerji 32 MW
74)Akbük Rüzgar Santrali Aydın Ayen Enerji 32 MW
75)MordoÄŸan Rüzgar Santrali İzmir Ayen Enerji 31 MW(42 MW)
76)Bereketli Rüzgar Enerji Santrali Tokat Kinesis Enerji 30 MW
77)Fuatres RES İzmir Borusan EnBW Enerji 30 MW
78)Geres Rüzgar Santrali Manisa Dost Enerji 30 MW
79)Mazı 3 Rüzgar Santrali İzmir Bilgin Enerji 30 MW(55 MW)
80)Poyraz RES Balıkesir MÖN İnÅŸaat Enerji Grubu 30 MW
81)Poyrazgölü Rüzgar Santrali Balıkesir Demirer Enerji 30 MW
82)Söke Çatalbük RES Aydın ABK Enerji 30 MW
83)Balıkesir Keltepe RES Balıkesir Demirer Enerji 30 MW
84)Çanakkale Rüzgar Santrali Çanakkale Enerjisa Elektrik 30 MW
85)Datça Rüzgar Santrali MuÄŸla Demirer Enerji 30 MW(41.6 MW)
86)Sarıkaya RES Tekirdağ Demirer Enerji 29 MW(41.5 MW)
87)Ayyıldız RES Balıkesir Akenerji 28 MW
88)Karacabey RES Bursa Bereket Enerji 28 MW
89)Sares Rüzgar Santrali Çanakkale Gama Enerji 28 MW
90)İncesu Rüzgar Santrali Afyonkarahisar Tamyeli Enerji Yatırım 27 MW
91)Elmalı RES Mersin Peker Enerji 27 MW
92)Kıyıköy Rüzgar Santrali Kırklareli Aksa Enerji 27 MW
93)Zaf Grup Åženbük RES Hatay Zaf Grup 27 MW
94)Tire Rüzgar Enerji Santrali İzmir Türkerler Holding 26 MW(50 MW)
95)Kores Kocadağ RES İzmir Dost Enerji 25 MW
96)Sarpıncık RES İzmir Çalık Enerji 25 MW(32 MW)
97)Sincik Rüzgar Santrali Adıyaman TektuÄŸ Elektrik 25 MW
98)Dilek Rüzgar Enerjisi Santrali KahramanmaraÅŸ Kale Enerji Üretim 24 MW(27.5 MW)
99)KapıdaÄŸ Rüzgar Santrali Balıkesir Aksa Enerji 24 MW(34.85 MW)
100)Kemerburgaz RES İstanbul Alto Holding 24 MW(34 MW)
101)Korkmaz Rüzgar Santrali İzmir Ayen Enerji 24 MW
102)Turguttepe Rüzgar Santrali Aydın FC Enerji 24 MW
103)Demirciler RES (Rotor 2) Gaziantep Zorlu Enerji 23 MW
104)Çamseki RES Çanakkale Demirer Enerji 21 MW
105)Petkim Rüzgar Santrali İzmir Petkim 21 MW(25 MW)
106)Akbük 2 Rüzgar Enerji Santrali MuÄŸla Ayen Enerji 20 MW
107)Boreas 1 Enez RES Edirne Boreas Enerji 20 MW
108)Günaydın RES Balıkesir Fina Enerji 20 MW(27.5 MW)
109)Salman Rüzgar Santrali İzmir Fina Enerji 20 MW
110)Bozyaka Rüzgar Enerjisi Santrali İzmir Kardemir Haddecilik ve Elektrik 20 MW
111)Madranbaba Rüzgar Santrali Aydın Kıroba Enerji 20 MW
112)AliaÄŸa Rüzgar Enerji Santrali İzmir Akça Enerji 19 MW
113)Karadere Rüzgar Santrali Kırklareli Fina Enerji 19 MW
114)Atik Rüzgar Santrali Hatay Aksa Enerji 18 MW(30 MW)
115)Kartaldağı Rüzgar Enerji Santrali Gaziantep Borusan EnBW Enerji 17 MW(63 MW)
116)KaradaÄŸ Rüzgar Enerji Santrali - RES İzmir Okman Enerji 16 MW
117)Alaçatı Rüzgar Santrali İzmir Enda Enerji 16 MW
118)ÇeÅŸme RES İzmir ABK ÇeÅŸme RES 16 MW
119)Havran Çataltepe RES Balıkesir Demirer Enerji 16 MW
120)Ova Rüzgar Enerji Santrali (RES) Aydın Kardemir Haddecilik ve Elektrik 15 MW
121)Urla Rüzgar Santrali - RES İzmir Sancak Enerji 15 MW
122)Yaylaköy RES İzmir Enda Enerji 15 MW
123)Zeliha Rüzgar Santrali Kırklareli GüriÅŸ Holding 15 MW(25.6 MW)
124)Burgaz Rüzgar Santrali Çanakkale Polat Enerji 15 MW
125)Seferihisar RES İzmir Ağaoğlu Enerji 14 MW
126)Egenda Ege Enerji Mordoğan RES İzmir Enda Enerji 14 MW
127)Egenda Enerji Urla RES İzmir Enda Enerji 13 MW
128)Akyurt RES Tokat Ado Enerji Üretim 13 MW
129)Barbaros Rüzgar Santrali TekirdaÄŸ Türkerler Holding 12 MW
130)İzmir Seferihisar Rüzgar Santrali İzmir Eksim Enerji 12 MW(16 MW)
131)Konakpınar RES Sivas Ado Enerji Üretim 12 MW
132)Zincirli Rüzgar Santrali Kayseri Rea Elektrik Üretim 12 MW
133)Egenda Enerji Germiyan RES İzmir Enda Enerji 11 MW
134)Karakurt RES Manisa Aksa Enerji 11 MW
135)ÇeÅŸme Germiyan Rüzgar Santrali İzmir Demirer Enerji 11 MW
136)Bores Bozcaada RES Çanakkale Demirer Enerji 10 MW
137)Adares Rüzgar Santrali İzmir FC Enerji 10 MW
138)Çataltepe RES İstanbul Süper Elektrik Üretim 10 MW
139)Karaçayır RES Sivas Ado Enerji 10 MW
140)Karadağ RES İzmir Gama Enerji 10 MW
141)Ortamandıra RES Balıkesir Fina Enerji 10 MW
142)Suay Enerji Akbük RES Aydın Suay Enerji 9,60 MW
143)GündoÄŸdu Rüzgar Santrali Bursa Türkay Alternatif Enerjiden Elektrik 9,00 MW
144)Alaçatı Ares Rüzgar Santrali İzmir Ares Enerji 7,20 MW
145)Ege Rüzgar Enerji Santrali İzmir Polat Enerji 7,00 MW
146)Hilal 2 RES Karaman Sanko Enerji 7,00 MW
147)Tepe Rüzgar Santrali İstanbul Teperes Elektrik 5,85 MW
148)Ayvacık Ayres Rüzgar Santrali Çanakkale Notos Elektrik Üretim AÅž 5,00 MW
149)Pitane RES İzmir Bıçakcılar Elektrik 4,80 MW
150)Saray RES TekirdaÄŸ Saray Alüminyum 4,00 MW
151)Ada 2 Rüzgar Tesisi Balıkesir Esit Enerji A.Åž. 3,20 MW
152)Karabel Rüzgar Santrali İzmir Egener Elektrik Üretim 3,00 MW
153)Garanti İplik RES Tekirdağ Garanti İplik 2,50 MW
154)Sunjüt Rüzgar Santrali İstanbul Sunjüt Enerji 1,20 MW
155)Karel Demir Rüzgar Santrali İzmir Kar-El Demir 1,00 MW
156)Çahan RES Çanakkale 0,90 MW
157)BoÄŸaziçi Üniversitesi Sarıtepe Kampüsü Rüzgar Santraliİstanbul BoÄŸaziçi Üniversitesi 0,90 MW
158)Gökçe RES Çanakkale 0,90 MW
159)Derby Rüzgar Enerjisi Santrali TekirdaÄŸ 0,80 MW
160)PaÅŸalimanı Adası Rüzgar Santrali Balıkesir RK Rüzgar Enerji 0,80 MW
161)YetiÅŸen RES Hatay 0,75 MW
162)Ayyıldız Enerji RES İstanbul Ayyıldız Enerji 0,50 MW
163)Kıvam Gıda Ezine Rüzgar Enerji Santrali Çanakkale 0,50 MW
164)Sermetal Kerse Çivi Rüzgar Enerji Santrali Balıkesir Sermetal Kerse Çivi ve Nakliyat 0,25 MW
165)Bereket ÇiftliÄŸi Rüzgar Santrali Hatay Bereket ÇiftliÄŸi 0,25 MW
166)Yücel Çeltik Rüzgar Enerji Santrali Balıkesir Yücel Tarım 0,25 MW
167)Tokat OSB Yalçın Rüzgar Enerji Santrali Tokat 0,10 MW
168)Gediz Üniversitesi RES İzmir Gediz Üniversitesi 0,10 MW
169)Karaburun Belediyesi RES İzmir Karaburun Belediyesi 0,050 MW
170)Saraycık Petrol RES Bilecik Saraycık Petrol 0,050 MW
171)Katip Çelebi Üniversitesi Rüzgar Türbini İzmir Katip Çelebi Üniversitesi 0,020 MW
